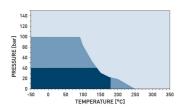


TESNIT® -

®
TESNIT BA-U combina muy buenas propiedades térmicas, químicas y mecánicas que hacen de TESNIT BA-U un material para juntas de uso general. Está bien diseñado para suministros de gas y agua potable.


INDUSTRIAS Y APLICACIONES APROPIADAS

- INDUSTRIAS DE CONSTRUCCIÓN DE AUTOMOCIÓN Y MOTORES
- INDUSTRIA DE ALIMENTOS
- PROPÓSITO GENERAL
- INDUSTRIA PETROQUÍMICA
- REFRIGERACIÓN Y REFRIGERACIÓN
- COMPRESORES Y BOMBAS
- SUMINISTRO DE GAS
- SISTEMAS DE CALEFACCIÓN
- SUMINISTRO DE AGUA POTABLE
- CONSTRUCCIÓN NAVAL

		SEALABILITY CHEMI PERFORMANCE RESISTA		SUMINISTRO DE AGUA				
Composición	NEGIG INNICE		FORMANCE RESISTANCE Fibras de aramida, cargas inorgánicas, ligante NBR. Refuerzo de malla de alambre de acero opcional.					
Color		Azul	, 3 3 , 3					
Aprobaciones y cumplimientos		abdominales DNVGL CE 1935/2004 TA Luft (VDI 2440)	AGA COMO 4623 DVGW DIN 30653 ELL (caliente) TZW W270	BAM (oxígeno) DVGW DIN 3535-6 SVGW DIN 3535-6 WRAS				
Dimensiones de la hoja		Tamaño (mm): $1500 \times 1500 \mid 3000 \times 1500 \mid 4500 \times 1500$ Grosor (mm): $0.5 \mid 1.0 \mid 1.5 \mid 2.0 \mid 3.0$ Otros tamaños y espesores disponibles bajo pedido						
Tolerancias		En espesores hasta 1,0	± 5 % en longitud y anchura En espesores hasta 1,0 mm ± 0,1 mm En espesores superiores a 1,0 mm ± 10 %					
Acabado de la superficie		Estándar: 4AS. Opciona	Estándar: 4AS. Opcional: grafito o PTFE.					
DATOS TÉCNICOS	Valores típicos para	2 mm de espesor						
Densidad	nsidad		3 g/cm	1.7				
Compresibilidad		ASTM F36J	%	11				
Recuperación		ASTM F36J	%	60				
Resistencia a la tracción		ASTM F152	MPa	14				
Estrés residual		DIN 52913						

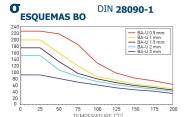

DATOS TECNICOS Valores tipicos para	2 mm de espesor				
Densidad	DIN 28090-2	3 g/cm	1.7		
Compresibilidad	ASTM F36J	%	11		
Recuperación	ASTM F36J	%	60		
Resistencia a la tracción	ASTM F152	MPa	14		
Estrés residual	DIN 52913				
50 MPa, 175 °C, 16 horas		MPa	27		
50 MPa, 300 °C, 16 horas		MPa	23		
Tasa de fuga específica	DIN 3535-6	mg/(s·m)	0.02		
Aumento de espesor	ASTM F146				
Aceite IRM 903, 150°C, 5 h		%	2		
Combustible ASTM B, 23°C, 5 h		%	5		
módulo de compresión	DIN 28090-2				
A temperatura ambiente: ϵ KSW		%	9.5		
A temperatura elevada: ε _{WSW/200°} C		%	16.1		
Relajación progresiva	DIN 28090-2				
A temperatura ambiente: $\epsilon_{\mbox{KRW}}$		%	4.7		
A temperatura elevada: ε WRW/200°C		%	0.8		
Condiciones máximas de funcionamiento					
Temperatura pico		°C/°F	350/662		
Temperatura continua		°C/°F	250/482		
Temperatura continua con vapor		°C/°F	200/392		
Presión		bar/psi	100/1450		

Diagrama PT EN 1514-1, Tipo IBC, PN 40, DIN 28091-2 / 3.8, 2 mm

Los diagramas PT indican la combinación máxima permisible de presión interna y temperatura de servicio que se puede aplicar simultáneamente a un espesor, tamaño y clase de estanqueidad de juntas dados. Dada la amplia variedad de aplicaciones de juntas y condiciones de servicio, estos valores solo deben considerarse como una guía para el montaje adecuado de juntas. En general, las juntas más delgadas exhiben mejores propiedades de PT.

- Idoneidad general Bajo prácticas de instalación comunes y compatibilidad química
- Idoneidad condicional: las medidas adecuadas garantizan el máximo rendimiento para el diseño de juntas y la instalación de juntas. Se recomienda consulta técnica
- Idoneidad limitada La consulta técnica es obligatoria.

Los diagramas de σ BO representan valores de σ BO para diferentes espesores de material de juntas. Estos valores indican las presiones de compresión máximas en servicio que se pueden aplicar en el área de la junta involucrada sin destruir o dañar el material de la junta.

TABLA DE RESISTENCIA QUÍMICA

The recommendations made here are intended as a guideline for the selection of a suitable gasket type. As the function and durability of products are dependent upon a number of factors, the data may not be used to support any warranty claims. If there are specific type-approval regulations, these have to be complied with.

Legend: + Recom	mended	 Recommendation 	n deper	nds on operating conditions,		Not recommended			
Acetamide	+	Calcium chloride	+	Freon-12 (R-12)	+	Motor oil	+	Sodium bisulfite	+
Acetic acid 10%	+	Calcium hydroxide	+	Freon-134a (R-134a)	+	Naphtha	+	Sodium carbonate	+
Acetic acid 100% (Glacial)	_	Carbon dioxide (gas)	+	Freon-22 (R-22)	0	Nitric acid 10%	_	Sodium chloride	+
Acetone	0	Carbon monoxide (gas)	+	Fruit juices	+	Nitric acid 65%	_	Sodium cyanide	+
Acetonitrile	_	Cellosolve	0	Fuel oil	+	Nitrobenzene	_	Sodium hydroxide	0
Acetylene (gas)	+	Chlorine (gas)	_	Gasoline	+	Nitrogen (Gas)	+	Sodium hypochlorite (Bleach)	0
Acid chlorides	_	Chlorine (in water)	+	Gelatin	+	Nitrous gases (NOx)	0	Sodium silicate (Water glass)	+
Acrylic acid	0	Chlorobenzene	0	Glycerine (Glycerol)	+	Octane	+	Sodium sulfate	+
Acrylonitrile	_	Chloroform	_	Glycols	+	Oils (Essential)	+	Sodium sulfide	+
Adipic acid	+	Chloroprene	0	Helium (gas)	+	Oils (Vegetable)	+	Starch	+
Air (gas)	+	Chlorosilanes	_	Heptane	+	Oleic acid	+	Steam	+
Alcohols	+	Chromic acid		Hydraulic oil (Mineral)	+	Oleum (Sulfuric acid, fuming)	_	Stearic acid	+
Aldehydes	0	Citric acid	0	Hydraulic oil (Glycol based)	+	Oxalic acid	0	Styrene	0
Alum	+	Copper acetate	+	Hydraulic oil (Phosphate ester-based)	0	Oxygen (gas)	+	Sugars	+
Aluminium acetate	+	Copper sulfate	+	Hydrazine	_	Palmitic acid	+	Sulfur	0
Aluminium chlorate	0	Creosote	0	Hydrocarbons	+	Paraffin oil	+	Sulfur dioxide (Gas)	0
Aluminium chloride	0	Cresols (Cresylic acid)	_	Hydrochloric acid 10%	0	Pentane	+	Sulfuric acid 20%	_
Aluminium sulfate	0	Cyclohexane	+	Hydrochloric acid 37%	_	Perchloroethylene	_	Sulfuric acid 98%	
Amines	_	Cyclohexanol	+	Hydrofluoric acid 10%	_	Petroleum (Crude oil)	+	Sulfuryl chloride	
Ammonia (Gas)	0	Cyclohexanone	0	Hydrofluoric acid 48%	_	Phenol (Carbolic acid)	_	Tar	+
Ammonium bicarbonate	+	Decalin	+	Hydrogen (gas)	+	Phosphoric acid, 40%	0	Tartaric acid	0
Ammonium chloride	+	Dextrin	+	Iron sulfate	+	Phosphoric acid, 85%	_	Tetrahydrofuran (THF)	_
Ammonium hydroxide	+	Dibenzyl ether	0	Isobutane (Gas)	+	Phthalic acid	+	Titanium tetrachloride	_
Amyl acetate	0	Dibutyl phthalate	0	Isooctane	+	Potassium acetate	+	Toluene	+
Anhydrides	0	Dimethylacetamide (DMA)	0	Isoprene	+	Potassium bicarbonate	+	2,4-Toluenediisocyanate	0
Aniline	_	Dimethylformamide (DMF)	0	Isopropyl alcohol (Isopropanol)	+	Potassium carbonate	+	Transformer oil (Mineral type)	+
Anisole	0	Dioxane	_	Kerosene	+	Potassium chloride	+	Trichloroethylene	
Argon (gas)	+	Diphyl (Dowtherm A)	+	Ketones	0	Potassium cyanide	+	Vinegar	+
Asphalt	+	Esters	0	Lactic acid	0	Potassium dichromate	0	Vinyl chloride (gas)	
Barium chloride	+	Ethane (Gas)	+	Lead acetate	+	Potassium hydroxide	0	Vinylidene chloride	_
Benzaldehyde	_	Ethers	0	Lead arsenate	+	Potassium iodide	+	Water	+
Benzene	+	Ethyl acetate	0	Magnesium sulfate	+	Potassium nitrate	+	White spirits	+
Benzoic acid	0	Ethyl alcohol (Ethanol)	+	Maleic acid	0	Potassium permanganate	0	Xylenes	+
Bio-diesel	+	Ethyl cellulose	0	Malic acid	0	Propane (gas)	+	Xylenol	_
Bio-ethanol	+	Ethyl chloride (gas)	_	Methane (Gas)	+	Propylene (gas)	+	Zinc sulfate	+
Black liquor	0	Ethylene (gas)	+	Methyl alcohol (Methanol)	+	Pyridine		· <u>L</u>	
Borax	+	Ethylene glycol	+	Methyl chloride (Gas)	0	Salicylic acid	0	•	
Boric acid	+	Formaldehyde (Formalin)	0	Methylene dichloride	0	Seawater/brine	+		
Butadiene (gas)	+	Formamide	0	Methyl ethyl ketone (MEK)	0	Silicones (oil/grease)	+		
Butane (gas)	+	Formic acid 10%	+	N-Methyl-pyrrolidone (NMP)	0	Soaps	+	•	
Butyl alcohol (Butanol)	+	Formic acid 85%	0	Milk	+	Sodium aluminate	+	•	
Butyric acid	+	Formic acid 100%	_	Mineral oil type ASTM 1	+	Sodium bicarbonate	+	•	

All information and data quoted are based upon decades of experience in the production and operation of sealing elements. This data may not be used to support any warranty claims. With its publication this latest edition supersedes all previous issues and is subject to change without further notice.

DONIT TESNIT, d.o.o. Cesta komandanta Staneta 38 1215 Medvode, Slovenia Phone: +386 (0)1 582 33 00 Fax: +386 (0)1 582 32 06 +386 (0)1 582 32 08 Web: www.donit.eu E-mail: info@donit.eu

All rights reserved Date of issue: 04.2021 / TDS-GSF-05-2018